How Are Robotics Used in Orthopaedics?
Orthopaedic surgery is well suited to robotics because it deals with bones, which are fixed objects with a recognisable position and form. As a result, it is far easier to control robotic procedures on bone than on human tissue. The first use of robotics in orthopaedic surgery was to help surgeons plan and carry out hip replacements in the nineties. Robotic orthopaedics now allows for medical assistance in hip, knee, spine, ankle, and shoulder surgeries. It is particularly useful for joint replacements and joint resurfacing.
Here are some of the main applications of robotics in orthopaedics:
Surgical Planning
Many orthopaedic robotic systems incorporate advanced methods of surgical planning. This can involve using CT scans to create a three-dimensional model to make precise measurements. This can guide the surgeon from start to finish of the operation. Some surgical planning systems also allow for a more personalised approach to the surgery. For example, they can take measurements that allow for a custom-made orthopaedic implant. Some robotic systems eliminate the need for CT scans. They are able to map the surface of the diseased cartilage and bone during the surgery. Analysis of patient-specific data can also provide insights to inform planning and patient care after the surgery.
A lot of the surgical planning feature of robotics uses AI. Gathering thousands of images and data allows surgeons to see what works best in similar scenarios. It also leads to the development of new smart technology. Ever faster processors, camera speeds, and cutting volume in newer surgery robots are also improving patient outcomes.
Robotic Machining of Bone
A major part of any orthopaedic surgery is bone cutting or drilling. A surgeon will do this to produce holes for screws, repair fractures, or shave the bone to perfectly fit an implant. While machining is a common process, it can lead to problems. The heat from machining can damage cells and tissues. Lack of precision can also lead to nerve damage in sensitive areas such as the spine.
Robotic surgeon systems can take precise measurements of bone density to drill or cut bone in a fast and accurate way that limits potential damage to the patient. Some robotic systems will give resistance and an audible warning to stop cutting if the surgeon moves the tool beyond the area laid down in the operation plan. Bone can be cut within a fraction of a millimetre, a kind of precision that a human surgeon could only dream of. The use of robots also means that fewer cuts to the bone is necessary
Optimised Placement of Implants
Whenever a bone or joint is replaced, an orthopaedic surgeon needs to insert the implant that will take over its function. One of the most important roles of robotic surgery is in perfecting the placement of the implant in a hip or knee joint. The artificial joint needs to be perfectly aligned for optimal mobility, movement, stability, and comfort. Each patient is unique, and a robotic system can map out the precise location of the implant to work with the ligaments and muscles. With hip replacements, robotic 3D modelling can simulate the range of motion of a patient’s leg. This can show the surgeon where adjustments are necessary. It can also improve the patient’s ergonomics and lead to less pain and injury in the future.